$$q$$ q -Rotations and Krawtchouk polynomials
نویسندگان
چکیده
منابع مشابه
q-Coherent pairs and q-orthogonal polynomials
In this paper we introduce the concept of q coherent pair of linear functionals. We prove that if ðu0; u1Þ is a q coherent pair of linear functionals, then at least one of them has to be a q classical linear functional. Moreover, we present the classification of all q coherent pairs of positive definite linear functionals when u0 or u1 is either the little q Jacobi linear functional or the litt...
متن کاملThe First and Second Zagreb Indices, First and Second Zagreb Polynomials of HAC5C6C7[p,q] and HAC5C7[p,q] Nanotubes
Topological indices are numerical parameters of a molecular graph G which characterize its topology. On the other hands, computing the connectivity indices of molecular graphs is an important branch in chemical graph theory. Therefore, we compute First Zagreb index Zg <span style="font-family: TimesNewRomanPS-Italic...
متن کاملQ-Hermite Polynomials and Classical Orthogonal Polynomials
We use generating functions to express orthogonality relations in the form of q-beta integrals. The integrand of such a q-beta integral is then used as a weight function for a new set of orthogonal or biorthogonal functions. This method is applied to the continuous q-Hermite polynomials, the Al-Salam-Carlitz polynomials, and the polynomials of Szegő and leads naturally to the Al-Salam-Chihara p...
متن کاملOn Q-derived Polynomials
A Q-derived polynomial is a univariate polynomial, defined over the rationals, with the property that its zeros, and those of all its derivatives are rational numbers. There is a conjecture that says that Q-derived polynomials of degree 4 with distinct roots for themselves and all their derivatives do not exist. We are not aware of a deeper reason for their non-existence than the fact that so f...
متن کاملOn Q-Derived Polynomials
It is known that Q-derived univariate polynomials (polynomials defined over Q, with the property that they and all their derivatives have all their roots in Q) can be completely classified subject to two conjectures: that no quartic with four distinct roots is Q-derived, and that no quintic with a triple root and two other distinct roots is Q-derived. We prove the second of these conjectures. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Ramanujan Journal
سال: 2015
ISSN: 1382-4090,1572-9303
DOI: 10.1007/s11139-015-9681-0